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트, 공의 회전, 공기의 저항을 말해 주면, 공이 배트에 맞은 후의 정확한 속도와 궤적을 
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다. 양자물리학자는 이렇게 말할 것이다. “아니오. 애초에 공의 위치와 속도 모두, 또는 
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현재 설계 중이라고 언급하고 있다.
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102. 같은 책, p. 15.

103. Bortz, 레퍼런스 B, p. 62.

104. 같은 책, p. 143.

105. 같은 책, p. 62.

106. 같은 책, p. 72.

107. Martin Hirsch, Heinrich Päs, and Werner Porod, “Ghostly Beacons of New Physics,” in 레

퍼런스 DD, p. 25.

108. Bortz, 레퍼런스 B, p. 147.
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110. Bortz, 레퍼런스 B, p. 145.

111. Barnett et al., 레퍼런스 HH, p. 212.
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10장: 5부에 대한소개
1. 원자의 중심 개념 하나가 우리를 둘러싼 모든 것을 설명한다는 데서 “간결하다”는 의미

이다. 

2. Wikipedia, s.v. “Eric Scerri,” last modified September 27, 2016 (accessed October 15, 

2016)에 의하면, 세리는 LA 캘리포니아대학교의 강사로, (국제 권위자 리뷰 저널인) 

Foundations of Chemistry 지의 설립자이자 편집장이며, 주기율표의 역사와 철학에 대

한 세계적 권위자이다. 그의 책 The Periodic Table, 레퍼런스 D, p. 247에서 세리는 다음

과 같이 적고 있다. “이 장의 목표는 주기율 시스템이 양자역학으로 간략히 설명되는지 

아닌지를 정하지 못했다. 상황이 좀 더 미묘하기 때문이다.” 그가 말한 이러한 문맥인 

“주기율 시스템은 양자역학으로 간략히 설명된다.”에서 “감축”을 정의하는데 있어 특

히 그렇다.” 그는 말을 이어간다. “그건 오히려 감축의 정도인지, 양자역학에 의해 제공

된 설명의 정도인지의 문제이다. 대부분의 화학자와 교육자들이 감축은 완전하다고 믿

는 듯 보이는 반면, 양자론으로 얼마나 엄격히 설명되는지를 질문해 보는데 아마도 어

떤 이익이 있을 수도 있는 것이다. 결국 양자역학이 아직 완전히 주기율표의 세부사항
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을 추론할 수는 없다는 것이 그다지 놀라운 사실은 아니다. 주기율표는 양자역학의 현

미경적인 세계에서 너무 멀리 떨어진 차원에서 실증적 자료를 모아 놓고 있기 때문이

다.”

3. Wikipedia, “Chemical Element”, last modified October 13, 2016, accessed October 15,2016.

4. 레퍼런스 D, starting on pp. 183, and p. 205.

11장: 수소 원자 전자의 에너지, 운동량, 그리고 공간상태
1. 사실 각운동량의 제곱이 여기서 논의하는 양자번호 ℓ을 만든다. 각운동량의 제곱 = ℓ (ℓ 

+1) (h/2π)2 다. 여기서 또다시 플랑크 상수가 등장한다. 

2. 각운동량의 z 요소는 mh/2π이고 “m” 은 m의 벡터가 자기장의 방향에 놓여있는 ℓ의 벡

터 부분만이기 때문에 범위 –ℓ에서 +ℓ까지로 한정된다. ℓ의 벡터 부분만이므로, m은 언

제나 강도에서 ℓ의 값과 같거나 작다. 또한 m의 이 범위는 슈뢰딩거 방정식의 솔루션

에서 직접적으로 얻는다. 이 범위 밖에서 m을 갖는 솔루션은 간단히 말해 없다. 

12장: 스핀과 자기력
1. 이것은 Leighton, 레퍼런스 F, p. 668에 “one of the greatest successes of theoretical physics.”

로 묘사되어 있다.

2. 같은 연구에서 디랙은 또한 전자와 같으나 음전하보다는 양전하를 띠는, 양전자의 존재

를 예측한다. 양전자는 뒤이어 발견되었다. “반물질”로 불리게 되는 것의 첫 등장이었

다. 그렇게 불리게 된 이유는 양전자와 접촉된 전자는 큰 에너지를 방출하며 둘 모두가 

소멸되기 때문이었다. 리차드 파인만은 9장에서 반물질에 대한 하위섹션에서 설명된 

것처럼 반물질에 대한 생각을 재미로 극한까지 발전시켜 보았다.  

3. 그리고 여기 또다시 플랑크 상수가 등장한다. 독립적으로 디랙의 계산의 결과로! 

4. 스핀과 자기 모멘트의 더욱 완전한 설명을 위해선, Leighton, 레퍼런스 F, p. 185를 참고

한다.

13장: 배타와 주기율표
1. Leighton, 레퍼런스 F, Figure 7-5, p. 251.

2. 이것은 14장에서 좀 더 설명된다.  좌측으로인 이유는 완성된 p블록 하위껍질 너머에 전

자의 수가 더 적으면, 각 전자는 덜 단단히 잡혀 있고 반응으로 더 쉽게 잃을 수 있기 때

문이다. 더 위쪽으로인 이유는 각 원자에 대해 배타는 전자가 더욱 단단히 결합된 낮

은 에너지 상태를 점유하는 것을 막기 때문이고, (기둥의 훨씬 위쪽에 있는 더 무거운 

원자의 전자에 특히 가능한) 바깥쪽의 더 높은 에너지 상태는 그다지 단단히 결합하지 

않기 때문이다. 이는 이들 좌편 원자의 가장 바깥쪽의 전자는 (완전히 채워진 안쪽 전

자 껍질에 의해) 핵의 양성자가 끌어 당기는 것으로부터 대부분 차단되기 때문이다. 표

의 우측 원소의 원자에는 반대가 적용된다. 이 원자들은 에너지 껍질을 완전히 채우는

데 더욱 소유욕이 강해지기 때문이다. 껍질이 채워지려는데 가까울수록 더욱 오른쪽의 

원소들에 해당된다. 이 경우 더욱 가벼운 원자의 가장 바깥쪽 전자는 핵에 더욱 가까운, 



475주석

더욱 낮고 더욱 단단히 결합하는 에너지 상태가 가능하고, 그래서 원자는 표의 우편 기

둥의 더욱 아래쪽에 위치한 원소에 대해 더욱 소유욕이 강하고 더욱 반응적이다. 이러

한 주장은 표의 맨 오른쪽 기둥의 비활성기체 원소의 원자에는 적용되지 않는다. 

15장: 화학적 결합의 몇 가지 형태, 예시
1. 화학에서 전자 구조의 이해를 제공하는 양자역학의 중요성은 몇몇 현대의 일반 화학 책

에서 강조된다. 가령 레퍼런스 H와 같은 책의 첫 장은 수소원자에 대한 슈뢰딩거의 방

정식과 그 솔루션의 설명으로 시작되며, 더 나아가 나머지 원소의 전자 구조와 분자의 

형태를 이해하는데 활용된다. 

2. 분리된 탄소 원자의 전자 구조는 두개의 점유된 공간 1s 상태(하나는 +스핀을 갖는 전자

이고 하나는 -스핀을 갖는 전자의)와 두개의 점유된 공간 2s 상태, 두개의 다른 반이 점

유된 2p 상태로 구성된다. 그러나 2s와 2p 상태의 에너지는 서로 너무 가까워서 이 상태

들은 가끔 합쳐져, 즉, 하이브리드되어 다른 원자와의 결합에서 전체 에너지를 낮춘다. 

이렇게 하면 이들은 총 상태의 같은 총 수를 형성하나 몇몇 공간상태는 이루어졌던 공

간상태와는 다른 형태로 되고 다른 각 방향이 된다. 

3. Pauling, 레퍼런스 P, p. 111.

4. Private communication with L. Howard Holley, with 레퍼런스 to Martin Chaplin, “Water 

Structure and Science,” London South Bank University, June 22, 2016, http://www1.lsbu.

ac.uk/water/ (accessed October 16, 2016).

5. 이러한 하이브리드화는 위에서 설명한 것처럼 탄소 원자에서 발생하는 것과 어떤 면에

서 유사하다.

17장: 절연체, 그리고 보통 금속과 반도체의 전기적 전도
1. Kittel, 레퍼런스 V, p. 159. 전선이나 회로의 저항은 옴으로 측정된다. 전선이나 회로에 

적용된 전압을, 암페어로 측정되며 결과적으로 흐르는 전류로 나눈 값으로 정의된다. 

금속, 절연체, 반도체의 전기 전류에 대한 고유저항은 ohm-cm으로 대개 측정된다. 물

질의 길이로 곱하고 단면적으로 나누면 물질의 실제 조각의 저항값이 나온다. 

2. 자유 전자에 대한 슈뢰딩거의 솔루션은 Kittel, 레퍼런스 V의 6장에 잘 설명되어 있다.

3. 페르미 레벨까지 점유된 상태의 수는 다루고 있는 금속성 표본에서 원자의 수에 정비례

한다. 작은 샘플이지만 말 그대로 수십억개이다. 표본이 클수록 연속적인 에너지레벨 

간의 에너지차이는 더 작아지며 어떤 에너지레벨에도 가능한 상태의 수는 더 많아진

다. 그러나 이와 동시에 원자와 전자의 수가 증가되고,  이 상태는 같은 페르미 레벨에 

추가적인 전자에 의해 점유된다. 그러므로 금속성 표본의 양과는 별도로 같은 페르미 

레벨 및 관련 물리적 특성이 생성된다.

4. Chapter 7 of Kittel, 레퍼런스 V.

5. 같은 책, p. 128.

18장: 나노기술과 5부 소개
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1. Rosenblum, 레퍼런스 X, p. 116.

2. Katherine Bourzac, “Nano-Architecture,” MIT Technology Review 118, no. 2 (March/April): 

35.

3. Julie Shapiro, “Breakthrough: ‘A Metal That’s (Almost) Lighter Than Air,’” Time, November 

2, 2015, p. 25.

19장: 초전도체 I
1. 이것은 존 바든의 두번째 노벨상이었다. 첫번째는 23장에 나와 있다. 골프광인 그는 “흠, 

노벨상 두 개면 아마 홀인원 하나보다는 낫겠군.”하고 말했다고 보츠, 레퍼런스 B, p. 

130에 나온다. 이 훌륭한 역사서적을 통해 이 책에서 언급한 많은 물리학자들의 추가적

인 짧은 전기를 좀 더 둘러보는 것도 좋을 것 같다. 

2. “고온”은 상대적인 의미이다. 더욱 최근에 개발된 “고온” 초전도체는 138 켈빈도*처
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매우 높은 전압의 변압기와 결과적으로 많은 중간 전력의 변압기가 변전소에서 전압을 

다시 낮춰 이웃으로 보낼 수 있도록 한다. 그리고 난 뒤 더욱 작은 것이 더 많이 있고, 

그 뒤에 더 작은 유입변압기가 이어서 가정에서 사용하는 수준의 전압으로 낮춘다.

8. 이전의 ASC 회의에 관해선, 발표된 논문들은 IEEE Transactions on Applied 

Superconductivity에서 검토되고 발행된다. 예를 들면, 오레건주 포틀랜드에서 개최된 

2012년도 회의는 이 저널 vol. 23, no. 3에 있다.

부록 A
1. 양의 마루에서 다음 양의 마루까지의 거리는 그림 A.1 Ⓒ에 나타난 E장과 B장 사인파동

이 모두 같으며 이 거리는 전자기파동의 파장 w로 정의된다. 전자기파동의 고전적 관

점에서 마루값(진폭)은 0까지 어느 값도 가질 수 있으며 파동의 에너지는 상응하여 0까

지 어느 값도 가질 수 있다. 그러나 사실 전자기에너지는 양자라 부르는 나누어지지 않

는 덩이로 나타난다. 그리고 각 양자의 에너지는 파동의 파장(또는 그와 동등한 진동

수)과 관련된다.

부록 B
1. 우린 이제 하나 또는 그 이상의 다른 원소에서부터 원소의 형성이 화학적 과정이 아닌, 
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핵 분열이나 핵 융합에 의해 발생할 수 있다는 것을 안다. (20장에서 논의하고 있다.)

2. 이 책에서 자주 에릭 세리에 의한 자료를 참조하고 있다. 세리 교수는 UCLA에서 화학과 
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여기선 그의 책 The Periodic Table (레퍼런스 D, p. 45)에서 인용하고 있다.

3. 같은 책, p. 112.

4. Scerri, 레퍼런스 D, p. 112의 표는 이미 다시 그려졌다. 로마숫자 표기의 출처가 멘델레예

프인지 세리인지는 명확치 않다.

5. 같은 책, page 112의 맨 끝에서 시작.

6. Kean, 레퍼런스 R, p. 49.

7. 같은 책, p. 50.

8. Scerri, 레퍼런스 D, p. 101.

9. 같은 책, p. xiii.
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2. 같은 책, p. 161.
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제조와 작동의 설명이 나온다.

5. Lieven M. K. Vandersypen et al., “Experimental Realization of Shor’s Quantum Factoring 

Algorithm Using Nuclear Magnetic Resonance,” Nature 414, no. 6866 (December 20–27, 

2001): 883–87.

6. Nanyang Xu et al., “Quantum Factorization of 143 on a Dipolar-Coupling NMR System,” 

Cornell University Library, arXiv:1111.3726 (November 16, 2011).

7. 원자의 크기는 1 나노미터 = 10-9 미터 = 다임 두께의 백만분의 1임을 참조한다.

8. Michelle Simmons, “Quantum Computing in Silicon and the Limits of Silicon 

Miniaturization—Michelle Simmons,” YouTube video, 43:27, Tat Institute of Fundamental 
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둘 가치가 있다.

9. 칩 가공의 한 비표준적 부분에서 주사형 터널현미경(STM)의 바늘 끝의 정전기적 인력
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은 실리콘 표면에 붙은 수소의 하나의 원자 굵기의 층에서 6개의 이웃한 원자를 선택

적으로 제거하는데 사용된다. 이어진 포스핀 기체와 열에의 노출은 단 하나의 인 원자
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자점을 형성한다.
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at Science at the Shine Dome under the auspices of the Australian Academy of Sciences, 

session “Atomic-Scale Electronics”), the speech is available at “Atomic-Scale Electronics for 

Quantum Computing: Prof. Michelle Simmons—Science at the Shine Dome 15,” YouTube 

video, 14:42, posted by the Australian Academy of Science, May 28, 2015, https://www.

youtube.com/watch?v=hg2UUdQm26s&index=7&list=PL9DfJTxCPaXIJZgp6kBprILssq_

AEAnY8 (accessed September 16, 2016).

11. 모든 광자는 본질적으로 전자기적이며 편광된다. 이들의 조그만 전기장은 부록 A의 그
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수평 편광의 조합으로 나타날 수 있다.

12. 하나의 특정 논리 게이트인 (고정 비트로는 불가능한) CNOT 게이트는 (예를 들어) 

오직 두번째 제어 큐비트가 (0과 반대인) 1 상태일 경우에만 목적 큐비트를 뒤집어서 
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비트가 나중에 서로 얼마나 멀리 물리적으로 떨어지는 것과는 관계없이 나타낼 수 있

다는 점이다.

13. 레퍼런스 Z, p. 161.
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17. 저온은 섭씨 단위로 편리하게 표현되나, (성취 가능한 가장 낮은 온도인) 절대 0도와 얼

음이 어는 온도인 273 켈빈도 사이의 켈빈 단위가 편리하다. 이러한 SQUID 기반 컴퓨

터는 절대 0도에서 1도 위인 1켈빈도 근처에서 보통 동작한다. 

18. Jeremy Hsu, “Google’s First Quantum Computer,” posted September 12, 2014, published in 
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googles-first-quantum-computer (accessed October 24, 2016); and “Progress in Quantum 
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20. 같은 책, p. 41.

부록 D
1. Richtmyer, 레퍼런스 G, p. 167.

2. 바닥상태의 원자는 전자에 의해 점유된 가장 낮은 에너지 상태로, 배타가 요구하는 것처

럼 스핀과 공간상태 조합마다 오직 하나의 전자만을 가짐을 기억한다.

3. 원소의 원자의 반경이 결정될 수 있는 한 방법은 그 원소 결정으로부터 x선 회절에 의해

서이다. 특정 각도에서 x선은 결정의 x선 파장과 원자간 간격에 따른 방식으로 강도가 

증가되어 그 결정에서 반사된다. 

4. 하지만 가끔 아연, 카드뮴, 수은은 전이금속으로 간주되지 않기도 한다.
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